Flagellar gyration and midpiece rotation during extension of the acrosomal process of Thyone sperm: how and why this occurs
نویسندگان
چکیده
The midpiece of Thyone sperm contains a large mitochondrion and a centriolar pair. Associated with one of the pair, i.e., the basal body of the flagellum, are satellite structures which apparently anchor the flagellar axoneme to the mitochondrion and to the plasma membrane covering the midpiece. Immediately before and as the acrosomal process elongates, the flagellum and the midpiece begin to rotate at 1-2 rotations per second even though the head of the sperm, by being firmly attached on its lateral surfaces to the coverslip, does not rotate at all. This rotation is not observed in the absence of flagellar beating whose frequency is much greater than that of its gyration. To understand how the midpiece rotates relative to the sperm head, it is first necessary to realize that in Thyone the flagellar axoneme projects at an acute angle to the principal axis of the sperm and is bent towards one side of this axis. Thus movement of the flagellum induces the sperm to tumble or yaw in solution. If the head is stuck, the midpiece will rotate because all that connects the sperm head to the midpiece is the plasma membrane, a liquid-like layer. A finger-like projection extends from the proximal centriole into an indentation in the basal end of the nucleus. In contrast to the asymmetry of the flagellum, this indentation is situated exactly on the principal axis of the sperm and, along with the finger-like projection, acts as a biological bearing to maintain the orderly rotation of the midpiece. The biological purpose of flagellar gyration during fertilization is discussed.
منابع مشابه
Acrosomal reaction of the Thyone sperm. III. The relationship between actin assembly and water influx during the extension of the acrosomal process
In an attempt to investigate the role of water influx in the extension of the acrosomal process of Thyone sperm, we induced the acrosomal reaction in sea water whose osmolarity varied from 50 to 150% of that of sea water. (a) Video sequences of the elongation of the acrosomal processes were made; plots of the length of the acrosomal process as a function of (time)1/2 produced a straight line ex...
متن کاملI-6: Role of Actin Cytoskeleton during Mouse Sperm Acrosomal Exocytosis
Background: Mammalian sperm must undergo a process termed capacitation to become competent to fertilize an egg. Capacitation renders the sperm competent by priming the cells to undergo a rapid exocytotic event called acrosomal exocytosis that is stimulated by the zona pellucida (ZP) of the egg or progesterone. Over the years, several biochemical events have been associated with the capacitation...
متن کاملAcrosomal reaction of thyone sperm. I. Changes in the sperm head visualized by high resolution video microscopy
Structural changes inside the head of Thyone sperm undergoing the acrosomal reaction were followed with a high-resolution, differential interference contrast (DIC) video microscope. The beating sperm, adhering by their midpiece to the cover slip of a wedge perfusion chamber, were activated by a calcium ionophore (20 microM A23187) suspended in sea water containing 50 mM excess CaCl2. Before act...
متن کاملAcrosomal reaction of Thyone sperm. II. The kinetics and possible mechanism of acrosomal process elongation
Thyone sperm were induced to undergo the acrosomal reaction with a calcium ionophore A23187 in sea water containing 50 mM excess CaCl2, and the extension of the acrosomal process was recorded with high-resolution, differential interference contrast video microscopy at 60 fields/sec. The length of the acrosomal process was measured at 0.25-s intervals on nine sperm. When the data were plotted as...
متن کاملActin from Thyone sperm assembles on only one end of an actin filament: a behavior regulated by profilin
Thyone sperm were demembranated with Triton X-100 and, after washing, extracted with 30 mM Tris at pH 8.0 and 1 mM MgCl2. After the insoluble contaminants were removed by centrifugation, the sperm extract was warmed to 22 degrees C. Actin filaments rapidly assembled and aggregated into bundles when KCl was added to the extract. When we added preformed actin filaments, i.e., the acrosomal filame...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 104 شماره
صفحات -
تاریخ انتشار 1987